Tag Archives: leetcode

C# || How To Find Largest Value In Each Binary Tree Row Using C#

The following is a module with functions which demonstrates how to find the largest value in each binary tree row using C#.


1. Largest Values – Problem Statement

Given the root of a binary tree, return an array of the largest value in each row of the tree (0-indexed).

Example 1:


Input: root = [1,3,2,5,3,null,9]
Output: [1,3,9]

Example 2:


Input: root = [1,2,3]
Output: [1,3]


2. Largest Values – Solution

The following is a solution which demonstrates how to find the largest value in each binary tree row.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


[1,3,9]
[1,3]

C# || How To Find The Minimum Speed To Arrive On Time Using C#

The following is a module with functions which demonstrates how to find the minimum speed to arrive on time using C#.


1. Min Speed On Time – Problem Statement

You are given a floating-point number hour, representing the amount of time you have to reach the office. To commute to the office, you must take n trains in sequential order. You are also given an integer array dist of length n, where dist[i] describes the distance (in kilometers) of the ith train ride.

Each train can only depart at an integer hour, so you may need to wait in between each train ride.

  • For example, if the 1st train ride takes 1.5 hours, you must wait for an additional 0.5 hours before you can depart on the 2nd train ride at the 2 hour mark.

Return the minimum positive integer speed (in kilometers per hour) that all the trains must travel at for you to reach the office on time, or -1 if it is impossible to be on time.

Tests are generated such that the answer will not exceed 107 and hour will have at most two digits after the decimal point.

Example 1:


Input: dist = [1,3,2], hour = 6
Output: 1
Explanation: At speed 1:
- The first train ride takes 1/1 = 1 hour.
- Since we are already at an integer hour, we depart immediately at the 1 hour mark. The second train takes 3/1 = 3 hours.
- Since we are already at an integer hour, we depart immediately at the 4 hour mark. The third train takes 2/1 = 2 hours.
- You will arrive at exactly the 6 hour mark.

Example 2:


Input: dist = [1,3,2], hour = 2.7
Output: 3
Explanation: At speed 3:
- The first train ride takes 1/3 = 0.33333 hours.
- Since we are not at an integer hour, we wait until the 1 hour mark to depart. The second train ride takes 3/3 = 1 hour.
- Since we are already at an integer hour, we depart immediately at the 2 hour mark. The third train takes 2/3 = 0.66667 hours.
- You will arrive at the 2.66667 hour mark.

Example 3:


Input: dist = [1,3,2], hour = 1.9
Output: -1
Explanation: It is impossible because the earliest the third train can depart is at the 2 hour mark.


2. Min Speed On Time – Solution

The following is a solution which demonstrates how to find the minimum speed to arrive on time.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


1
3
-1

C# || How To Find The Minimum ASCII Delete Sum for Two Strings Using C#

The following is a module with functions which demonstrates how to find the minimum ASCII delete sum for two strings using C#.


1. Minimum Delete Sum – Problem Statement

Given two strings s1 and s2, return the lowest ASCII sum of deleted characters to make two strings equal.

Example 1:


Input: s1 = "sea", s2 = "eat"
Output: 231
Explanation: Deleting "s" from "sea" adds the ASCII value of "s" (115) to the sum.
Deleting "t" from "eat" adds 116 to the sum.
At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.

Example 2:


Input: s1 = "delete", s2 = "leet"
Output: 403
Explanation: Deleting "dee" from "delete" to turn the string into "let",
adds 100[d] + 101[e] + 101[e] to the sum.
Deleting "e" from "leet" adds 101[e] to the sum.
At the end, both strings are equal to "let", and the answer is 100+101+101+101 = 403.
If instead we turned both strings into "lee" or "eet", we would get answers of 433 or 417, which are higher.


2. Minimum Delete Sum – Solution

The following is a solution which demonstrates how to find the minimum ASCII delete sum for two strings.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


231
403

C# || Fruit Into Baskets – How To Find The Maximum Number Of Fruits Using C#

The following is a module with functions which demonstrates how to find the maximum number of fruits using C#.


1. Total Fruit – Problem Statement

You are visiting a farm that has a single row of fruit trees arranged from left to right. The trees are represented by an integer array fruits where fruits[i] is the type of fruit the ith tree produces.

You want to collect as much fruit as possible. However, the owner has some strict rules that you must follow:

  • You only have two baskets, and each basket can only hold a single type of fruit. There is no limit on the amount of fruit each basket can hold.
  • Starting from any tree of your choice, you must pick exactly one fruit from every tree (including the start tree) while moving to the right. The picked fruits must fit in one of your baskets.
  • Once you reach a tree with fruit that cannot fit in your baskets, you must stop.

Given the integer array fruits, return the maximum number of fruits you can pick.

Example 1:


Input: fruits = [1,2,1]
Output: 3
Explanation: We can pick from all 3 trees.

Example 2:


Input: fruits = [0,1,2,2]
Output: 3
Explanation: We can pick from trees [1,2,2].
If we had started at the first tree, we would only pick from trees [0,1].

Example 3:


Input: fruits = [1,2,3,2,2]
Output: 4
Explanation: We can pick from trees [2,3,2,2].
If we had started at the first tree, we would only pick from trees [1,2].


2. Total Fruit – Solution

The following is a solution which demonstrates how to find the maximum number of fruits.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


3
3
4

C# || How To Find The Minimum Rounds To Complete All Tasks Using C#

The following is a module with functions which demonstrates how to find the minimum rounds to complete all tasks using C#.


1. Minimum Rounds – Problem Statement

You are given a 0-indexed integer array tasks, where tasks[i] represents the difficulty level of a task. In each round, you can complete either 2 or 3 tasks of the same difficulty level.

Return the minimum rounds required to complete all the tasks, or -1 if it is not possible to complete all the tasks.

Example 1:


Input: tasks = [2,2,3,3,2,4,4,4,4,4]
Output: 4
Explanation: To complete all the tasks, a possible plan is:
- In the first round, you complete 3 tasks of difficulty level 2.
- In the second round, you complete 2 tasks of difficulty level 3.
- In the third round, you complete 3 tasks of difficulty level 4.
- In the fourth round, you complete 2 tasks of difficulty level 4.
It can be shown that all the tasks cannot be completed in fewer than 4 rounds, so the answer is 4.

Example 2:


Input: tasks = [2,3,3]
Output: -1
Explanation: There is only 1 task of difficulty level 2, but in each round, you can only complete either 2 or 3 tasks of the same difficulty level. Hence, you cannot complete all the tasks, and the answer is -1.


2. Minimum Rounds – Solution

The following is a solution which demonstrates how to find the minimum rounds to complete all tasks.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


4
-1

C# || How To Design A Least Frequently Used (LFU) Cache Using C#

The following is a module with functions which demonstrates how to design a least frequently used (LFU) cache using C#.


1. LFU Cache – Problem Statement

Design and implement a data structure for a Least Frequently Used (LFU) cache.

Implement the LFUCache class:

  • LFUCache(int capacity) Initializes the object with the capacity of the data structure.
  • int get(int key) Gets the value of the key if the key exists in the cache. Otherwise, returns -1.
  • void put(int key, int value) Update the value of the key if present, or inserts the key if not already present. When the cache reaches its capacity, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently used key would be invalidated.

To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.

When a key is first inserted into the cache, its use counter is set to 1 (due to the put operation). The use counter for a key in the cache is incremented either a get or put operation is called on it.

The functions get and put must each run in O(1) average time complexity.

Example 1:


Input
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]

Explanation
// cnt(x) = the use counter for key x
// cache=[] will show the last used order for tiebreakers (leftmost element is most recent)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1); // cache=[1,_], cnt(1)=1
lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1); // return 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2.
  // cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1.
// cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4); // return 4
// cache=[4,3], cnt(4)=2, cnt(3)=3


2. LFU Cache – Solution

The following is a solution which demonstrates how to design a least frequently used (LFU) cache.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


[null,null,null,1,null,-1,3,null,-1,3,4]

C# || How To Find The Minimum Fuel Cost To Report To The Capital Using C#

The following is a module with functions which demonstrates how to find the minimum fuel cost to report to the capital using C#.


1. Minimum Fuel Cost – Problem Statement

There is a tree (i.e., a connected, undirected graph with no cycles) structure country network consisting of n cities numbered from 0 to n – 1 and exactly n – 1 roads. The capital city is city 0. You are given a 2D integer array roads where roads[i] = [ai, bi] denotes that there exists a bidirectional road connecting cities ai and bi.

There is a meeting for the representatives of each city. The meeting is in the capital city.

There is a car in each city. You are given an integer seats that indicates the number of seats in each car.

A representative can use the car in their city to travel or change the car and ride with another representative. The cost of traveling between two cities is one liter of fuel.

Return the minimum number of liters of fuel to reach the capital city.

Example 1:


Input: roads = [[0,1],[0,2],[0,3]], seats = 5
Output: 3
Explanation:
- Representative1 goes directly to the capital with 1 liter of fuel.
- Representative2 goes directly to the capital with 1 liter of fuel.
- Representative3 goes directly to the capital with 1 liter of fuel.
It costs 3 liters of fuel at minimum.
It can be proven that 3 is the minimum number of liters of fuel needed.

Example 2:


Input: roads = [[3,1],[3,2],[1,0],[0,4],[0,5],[4,6]], seats = 2
Output: 7
Explanation:
- Representative2 goes directly to city 3 with 1 liter of fuel.
- Representative2 and representative3 go together to city 1 with 1 liter of fuel.
- Representative2 and representative3 go together to the capital with 1 liter of fuel.
- Representative1 goes directly to the capital with 1 liter of fuel.
- Representative5 goes directly to the capital with 1 liter of fuel.
- Representative6 goes directly to city 4 with 1 liter of fuel.
- Representative4 and representative6 go together to the capital with 1 liter of fuel.
It costs 7 liters of fuel at minimum.
It can be proven that 7 is the minimum number of liters of fuel needed.

Example 3:


Input: roads = [], seats = 1
Output: 0
Explanation: No representatives need to travel to the capital city.


2. Minimum Fuel Cost – Solution

The following is a solution which demonstrates how to find the minimum fuel cost to report to the capital.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


3
7
0

C# || How To Find The Minimum Time To Collect All Apples In A Tree Using C#

The following is a module with functions which demonstrates how to find the minimum time to collect all apples in a tree using C#.


1. Min Time – Problem Statement

Given an undirected tree consisting of n vertices numbered from 0 to n-1, which has some apples in their vertices. You spend 1 second to walk over one edge of the tree. Return the minimum time in seconds you have to spend to collect all apples in the tree, starting at vertex 0 and coming back to this vertex.

The edges of the undirected tree are given in the array edges, where edges[i] = [ai, bi] means that exists an edge connecting the vertices ai and bi. Additionally, there is a boolean array hasApple, where hasApple[i] = true means that vertex i has an apple; otherwise, it does not have any apple.

Example 1:


Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,true,true,false]
Output: 8
Explanation: The figure above represents the given tree where red vertices have an apple. One optimal path to collect all apples is shown by the green arrows.

Example 2:


Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,true,false,false,true,false]
Output: 6
Explanation: The figure above represents the given tree where red vertices have an apple. One optimal path to collect all apples is shown by the green arrows.

Example 3:


Input: n = 7, edges = [[0,1],[0,2],[1,4],[1,5],[2,3],[2,6]], hasApple = [false,false,false,false,false,false,false]
Output: 0


2. Min Time – Solution

The following is a solution which demonstrates how to find the cheapest flights within K stops.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


8
6
0

C# || How To Sort An Array O(nlog(n)) Using C#

The following is a module with functions which demonstrates how to sort an array O(nlog(n)) complexity using C#.


1. Sort Array – Problem Statement

Given an array of integers nums, sort the array in ascending order and return it.

You must solve the problem without using any built-in functions in O(nlog(n)) time complexity and with the smallest space complexity possible.

Example 1:


Input: nums = [5,2,3,1]
Output: [1,2,3,5]
Explanation: After sorting the array, the positions of some numbers are not changed (for example, 2 and 3), while the positions of other numbers are changed (for example, 1 and 5).

Example 2:


Input: nums = [5,1,1,2,0,0]
Output: [0,0,1,1,2,5]
Explanation: Note that the values of nums are not necessairly unique.


2. Sort Array – Solution

The following is a solution which demonstrates how to sort an array O(nlog(n)) complexity using C#.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


[1,2,3,5]
[0,0,1,1,2,5]

C# || How To Find The Cheapest Flights Within K Stops Using C#

The following is a module with functions which demonstrates how to find the cheapest flights within K stops using C#.


1. Find Cheapest Price – Problem Statement

There are n cities connected by some number of flights. You are given an array flights where flights[i] = [fromi, toi, pricei] indicates that there is a flight from city fromi to city toi with cost pricei.

You are also given three integers src, dst, and k, return the cheapest price from src to dst with at most k stops. If there is no such route, return -1.

Example 1:


Input: n = 4, flights = [[0,1,100],[1,2,100],[2,0,100],[1,3,600],[2,3,200]], src = 0, dst = 3, k = 1
Output: 700
Explanation:
The graph is shown above.
The optimal path with at most 1 stop from city 0 to 3 is marked in red and has cost 100 + 600 = 700.
Note that the path through cities [0,1,2,3] is cheaper but is invalid because it uses 2 stops.

Example 2:


Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 1
Output: 200
Explanation:
The graph is shown above.
The optimal path with at most 1 stop from city 0 to 2 is marked in red and has cost 100 + 100 = 200.

Example 3:


Input: n = 3, flights = [[0,1,100],[1,2,100],[0,2,500]], src = 0, dst = 2, k = 0
Output: 500
Explanation:
The graph is shown above.
The optimal path with no stops from city 0 to 2 is marked in red and has cost 500.


2. Find Cheapest Price – Solution

The following is a solution which demonstrates how to find the cheapest flights within K stops.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


700
200
500

C# || Daily Temperatures – How To Find The Number Of Days Until Warmer Temperature Using C#

The following is a module with functions which demonstrates how to find the number of days until warmer temperature using C#.


1. Daily Temperatures – Problem Statement

Given an array of integers temperatures represents the daily temperatures, return an array answer such that answer[i] is the number of days you have to wait after the ith day to get a warmer temperature. If there is no future day for which this is possible, keep answer[i] == 0 instead.

Example 1:


Input: temperatures = [73,74,75,71,69,72,76,73]
Output: [1,1,4,2,1,1,0,0]

Example 2:


Input: temperatures = [30,40,50,60]
Output: [1,1,1,0]

Example 3:


Input: temperatures = [30,60,90]
Output: [1,1,0]


2. Daily Temperatures – Solution

The following is a solution which demonstrates how to find the number of days until warmer temperature.

This solution uses the monotonic stack approach.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


[1,1,4,2,1,1,0,0]
[1,1,1,0]
[1,1,0]

C# || How To Find Maximum Difference Between Node and Ancestor In Binary Tree Using C#

The following is a module with functions which demonstrates how to find the maximum difference between node and ancestor in binary tree using C#.


1. Max Ancestor Diff – Problem Statement

Given the root of a binary tree, find the maximum value v for which there exist different nodes a and b where v = |a.val – b.val| and a is an ancestor of b.

A node a is an ancestor of b if either: any child of a is equal to b or any child of a is an ancestor of b.

Example 1:

Example 1


Input: root = [8,3,10,1,6,null,14,null,null,4,7,13]
Output: 7
Explanation: We have various ancestor-node differences, some of which are given below :
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
Among all possible differences, the maximum value of 7 is obtained by |8 - 1| = 7.

Example 2:

Example 2


Input: root = [1,null,2,null,0,3]
Output: 3


2. Max Ancestor Diff – Solution

The following is a solution which demonstrates how to find the maximum difference between node and ancestor in binary tree.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


7
3

C# || How To Remove Stones To Minimize The Total Using C#

The following is a module with functions which demonstrates how to remove stones to minimize the total using C#.


1. Min Stone Sum – Problem Statement

You are given a 0-indexed integer array piles, where piles[i] represents the number of stones in the ith pile, and an integer k. You should apply the following operation exactly k times:

  • Choose any piles[i] and remove floor(piles[i] / 2) stones from it.

Notice that you can apply the operation on the same pile more than once.

Return the minimum possible total number of stones remaining after applying the k operations.

floor(x) is the greatest integer that is smaller than or equal to x (i.e., rounds x down).

Example 1:


Input: piles = [5,4,9], k = 2
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [5,4,5].
- Apply the operation on pile 0. The resulting piles are [3,4,5].
The total number of stones in [3,4,5] is 12.

Example 2:


Input: piles = [4,3,6,7], k = 3
Output: 12
Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [4,3,3,7].
- Apply the operation on pile 3. The resulting piles are [4,3,3,4].
- Apply the operation on pile 0. The resulting piles are [2,3,3,4].
The total number of stones in [2,3,3,4] is 12.


2. Min Stone Sum – Solution

The following is a solution which demonstrates how to remove stones to minimize the total.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


12
12

C# || Single-Threaded CPU – How To Find The Order CPU Will Process Tasks Using C#

The following is a module with functions which demonstrates how to find the order CPU will process tasks using C#.


1. Get Order – Problem Statement

You are given n​​​​​​ tasks labeled from 0 to n – 1 represented by a 2D integer array tasks, where tasks[i] = [enqueueTimei, processingTimei] means that the i​​​​​​th​​​​ task will be available to process at enqueueTimei and will take processingTimei to finish processing.

You have a single-threaded CPU that can process at most one task at a time and will act in the following way:

  • If the CPU is idle and there are no available tasks to process, the CPU remains idle.
  • If the CPU is idle and there are available tasks, the CPU will choose the one with the shortest processing time. If multiple tasks have the same shortest processing time, it will choose the task with the smallest index.
  • Once a task is started, the CPU will process the entire task without stopping.
  • The CPU can finish a task then start a new one instantly.

Return the order in which the CPU will process the tasks.

Example 1:


Input: tasks = [[1,2],[2,4],[3,2],[4,1]]
Output: [0,2,3,1]
Explanation: The events go as follows:
- At time = 1, task 0 is available to process. Available tasks = {0}.
- Also at time = 1, the idle CPU starts processing task 0. Available tasks = {}.
- At time = 2, task 1 is available to process. Available tasks = {1}.
- At time = 3, task 2 is available to process. Available tasks = {1, 2}.
- Also at time = 3, the CPU finishes task 0 and starts processing task 2 as it is the shortest. Available tasks = {1}.
- At time = 4, task 3 is available to process. Available tasks = {1, 3}.
- At time = 5, the CPU finishes task 2 and starts processing task 3 as it is the shortest. Available tasks = {1}.
- At time = 6, the CPU finishes task 3 and starts processing task 1. Available tasks = {}.
- At time = 10, the CPU finishes task 1 and becomes idle.

Example 2:


Input: tasks = [[7,10],[7,12],[7,5],[7,4],[7,2]]
Output: [4,3,2,0,1]
Explanation: The events go as follows:
- At time = 7, all the tasks become available. Available tasks = {0,1,2,3,4}.
- Also at time = 7, the idle CPU starts processing task 4. Available tasks = {0,1,2,3}.
- At time = 9, the CPU finishes task 4 and starts processing task 3. Available tasks = {0,1,2}.
- At time = 13, the CPU finishes task 3 and starts processing task 2. Available tasks = {0,1}.
- At time = 18, the CPU finishes task 2 and starts processing task 0. Available tasks = {1}.
- At time = 28, the CPU finishes task 0 and starts processing task 1. Available tasks = {}.
- At time = 40, the CPU finishes task 1 and becomes idle.


2. Get Order – Solution

The following is a solution which demonstrates how to find the order CPU will process tasks.

QUICK NOTES:
The highlighted lines are sections of interest to look out for.

The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.

Once compiled, you should get this as your output for the example cases:


[0,2,3,1]
[4,3,2,0,1]