Tag Archives: Struct
C++ || Snippet – Singly Linked List Custom Template Queue Sample Code
This page will consist of sample code for a custom singly linked list template queue. This implementation differs from the previously highlighted doubly linked list in that this version uses a single node to store its data rather than using two separate nodes (front and rear).
Looking for sample code for a stack? Click here.
REQUIRED KNOWLEDGE FOR THIS SNIPPET
Structs
Classes
Template Classes - What Are They?''
Queue - What is it?
FIFO - First In First Out
#include < queue>
Linked Lists - How To Use
This template class is a custom duplication of the Standard Template Library (STL) queue class. Whether you like building your own data structures, you simply do not like to use any inbuilt functions, opting to build everything yourself, or your homework requires you make your own data structure, this sample code is really useful. I feel its beneficial building functions such as this, that way you better understand the behind the scene processes.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
// ============================================================================ // Author: K Perkins // Date: Jul 14, 2012 // Taken From: http://programmingnotes.org/ // File: SingleQueue.h // Description: This is a class which implements various functions // demonstrating the use of a queue. // ============================================================================ #include <iostream> template <class ItemType> class SingleQueue { public: SingleQueue(); /* Function: Constructor initializes queue Precondition: None Postcondition: Defines private variables */ bool IsEmpty(); /* Function: Determines whether queue is empty Precondition: Queue has been created Postcondition: The function = true if the queue is empty and the function = false if queue is not empty */ bool IsFull(); /* Function: Determines whether queue is full Precondition: Queue has been created Postcondition: The function = true if the queue is full and the function = false if queue is not full */ void EnQueue(ItemType item); /* Function: Adds new item to the back of the queue Precondition: Queue has been created and is not full Postcondition: Item is in the queue */ ItemType DeQueue(); /* Function: Returns and then deletes the first item in the queue Precondition: Queue has been created and is not empty Postcondition: The first item in the queue has been removed and the queue order is maintained */ ItemType Front(); /* Function: Returns (but does not delete) the first item in the queue Precondition: Queue has been created and is not empty Postcondition: The first item in the queue has been returned and the queue order is maintained */ ItemType Rear(); /* Function: Returns (but does not delete) the last item in the queue Precondition: Queue has been created and is not empty Postcondition: The last item in the queue has been returned and the queue order is maintained */ int Size(); /* Function: Return the current size of the queue Precondition: Queue has been initialized Postcondition: The size of the queue is returned */ void MakeEmpty(); /* Function: Initializes queue to an empty state Precondition: Queue has been created Postcondition: Queue no longer exists */ ~SingleQueue(); /* Function: Removes the queue Precondition: Queue has been declared Postcondition: Queue no longer exists */ private: struct NodeType { ItemType currentItem; NodeType* next; }; NodeType* head; // front of queue int size; }; //========================= Implementation ================================// template<class ItemType> SingleQueue<ItemType>::SingleQueue() { head = NULL; size = 0; }/* end of SingleQueue */ template<class ItemType> bool SingleQueue<ItemType>::IsEmpty() { return (head == NULL); }/* end of IsEmpty */ template<class ItemType> bool SingleQueue<ItemType>::IsFull() { try { NodeType* location = new NodeType; delete location; return false; } catch(std::bad_alloc&) { return true; } }/* end of IsFull */ template<class ItemType> void SingleQueue<ItemType>::EnQueue(ItemType newItem) { if(IsFull()) { std::cout<<"nQUEUE FULLn"; } else { NodeType* newNode = new NodeType; // adds new node newNode-> currentItem = newItem; newNode-> next = NULL; if(IsEmpty()) { head = newNode; } else { NodeType* tempPtr = head; while(tempPtr-> next != NULL) { tempPtr = tempPtr-> next; } tempPtr-> next = newNode; } ++size; } }/* end of EnQueue */ template<class ItemType> ItemType SingleQueue<ItemType>::DeQueue() { if(IsEmpty()) { std::cout<<"nQUEUE EMPTYn"; } else { NodeType* tempPtr = head; // temporary pointer ItemType item = head-> currentItem; head = head-> next; delete tempPtr; --size; return item; } }/* end of DeQueue */ template<class ItemType> ItemType SingleQueue<ItemType>::Front() { if(IsEmpty()) { std::cout<<"nQUEUE EMPTYn"; } else { ItemType item = head-> currentItem; return item; } }/* end of Front */ template<class ItemType> ItemType SingleQueue<ItemType>::Rear() { if(IsEmpty()) { std::cout<<"nQUEUE EMPTYn"; } else { NodeType* tempPtr = head; // temporary pointer while(tempPtr->next != NULL) { tempPtr = tempPtr-> next; } ItemType item = tempPtr-> currentItem; return item; } }/* end of Rear */ template<class ItemType> int SingleQueue<ItemType>::Size() { if(IsEmpty()) { std::cout<<"nQUEUE EMPTYn"; } return size; }/* end of Size */ template<class ItemType> void SingleQueue<ItemType>::MakeEmpty() { if(!IsEmpty()) { std::cout << "Destroying nodes ...n"; while(!IsEmpty()) { NodeType* tempPtr = head; //std::cout << tempPtr-> currentItem << 'n'; head = head-> next; delete tempPtr; } size = 0; } }/* end of MakeEmpty */ template<class ItemType> SingleQueue<ItemType>::~SingleQueue() { MakeEmpty(); }// http://programmingnotes.org/ |
QUICK NOTES:
The highlighted lines are sections of interest to look out for.
The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.
===== DEMONSTRATION HOW TO USE =====
Use of the above template class is the same as its STL counterpart. Here is a sample program demonstrating its use.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
#include <iostream> #include "SingleQueue.h" using namespace std; int main() { // declare variables SingleQueue<char> charQueue; SingleQueue<int> intQueue; SingleQueue<double> doubleQueue; // ------ Char Example ------// char charArry[]="My Programming Notes Is A Big Help!"; int counter=0; while(charArry[counter]!='\0') { charQueue.EnQueue(charArry[counter]); ++counter; } cout<<"charQueue has "<<charQueue.Size()<<" items in it " <<"and contains the text:n"; while(!charQueue.IsEmpty()) { cout<<charQueue.DeQueue(); } cout<<endl; // ------ Int Example ------// int intArry[]={1,22,309,461,-92,66,7,8,1987,9,27,12}; counter=0; while(counter < sizeof(intArry)/sizeof(intArry[0])) { intQueue.EnQueue(intArry[counter]); ++counter; } cout<<"nintQueue has "<<intQueue.Size()<<" items in it.n" <<"The sum of the numbers in the queue is: "; counter=0; while(!intQueue.IsEmpty()) { counter-=intQueue.DeQueue(); } cout<<counter<<endl; // ------ Double Example ------// double doubleArry[]={31.62,2.8,43.9,4.4,19.87,6.23,7.787,68.99,9.6,3.540,12.04}; double sum=0; counter=0; while(counter < sizeof(doubleArry)/sizeof(doubleArry[0])) { doubleQueue.EnQueue(doubleArry[counter]); ++counter; } cout<<"ndoubleQueue has "<<doubleQueue.Size()<<" items in it.n" <<"The sum of the numbers in the queue is: "; while(!doubleQueue.IsEmpty()) { sum+=doubleQueue.DeQueue(); } cout<<sum<<endl; return 0; }// http://programmingnotes.org/ |
Once compiled, you should get this as your output
charQueue has 35 items in it and contains the text:
My Programming Notes Is A Big Help!intQueue has 12 items in it.
The sum of the numbers in the queue is: -2817doubleQueue has 11 items in it.
The sum of the numbers in the queue is: 210.777
Press any key to continue . . .
C++ || Snippet – Doubly Linked List Custom Template Queue Sample Code
This page will consist of sample code for a custom doubly linked list template queue. This implementation is considered a doubly linked list because it uses two nodes to store data in the queue – a ‘front’ and a ‘rear’ node. This is not a circular linked list, nor does it link forwards and/or backwards.
Looking for sample code for a stack? Click here.
REQUIRED KNOWLEDGE FOR THIS SNIPPET
Structs
Classes
Template Classes - What Are They?
Queue - What is it?
FIFO - First In First Out
#include < queue>
Linked Lists - How To Use
This template class is a custom duplication of the Standard Template Library (STL) queue class. Whether you like building your own data structures, you simply do not like to use any inbuilt functions, opting to build everything yourself, or your homework requires you make your own data structure, this sample code is really useful. I feel its beneficial building functions such as this, that way you better understand the behind the scene processes.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
// ============================================================================ // Author: K Perkins // Date: May 20, 2012 // Taken From: http://programmingnotes.org/ // File: DoubleQueue.h // Description: This is a class which implements various functions // demonstrating the use of a queue. // ============================================================================ #include <iostream> template <class ItemType> class DoubleQueue { public: DoubleQueue(); /* Function: Constructor initializes queue Precondition: None Postcondition: Defines private variables */ bool IsEmpty(); /* Function: Determines whether queue is empty Precondition: Queue has been created Postcondition: The function = true if the queue is empty and the function = false if queue is not empty */ bool IsFull(); /* Function: Determines whether queue is full Precondition: Queue has been created Postcondition: The function = true if the queue is full and the function = false if queue is not full */ void EnQueue(ItemType item); /* Function: Adds new item to the back of the queue Precondition: Queue has been created and is not full Postcondition: Item is in the queue */ ItemType DeQueue(); /* Function: Returns and then deletes the first item in the queue Precondition: Queue has been created and is not empty Postcondition: The first item in the queue has been removed and the queue order is maintained */ ItemType Front(); /* Function: Returns (but does not delete) the first item in the queue Precondition: Queue has been created and is not empty Postcondition: The first item in the queue has been returned and the queue order is maintained */ ItemType Rear(); /* Function: Returns (but does not delete) the last item in the queue Precondition: Queue has been created and is not empty Postcondition: The last item in the queue has been returned and the queue order is maintained */ int Size(); /* Function: Return the current size of the queue Precondition: Queue has been initialized Postcondition: The size of the queue is returned */ void MakeEmpty(); /* Function: Initializes queue to an empty state Precondition: Queue has been created Postcondition: Queue no longer exists */ ~DoubleQueue(); /* Function: Removes the queue Precondition: Queue has been declared Postcondition: Queue no longer exists */ private: struct NodeType { ItemType currentItem; NodeType* next; }; NodeType* front; // front of queue NodeType* rear; // back of queue int size; }; //========================= Implementation ================================// template<class ItemType> DoubleQueue<ItemType>::DoubleQueue() { front = NULL; rear = NULL; size = 0; }/* end of DoubleQueue */ template<class ItemType> bool DoubleQueue<ItemType>::IsEmpty() { return (front == NULL); }/* end of IsEmpty */ template<class ItemType> bool DoubleQueue<ItemType>::IsFull() { try { NodeType* location = new NodeType; delete location; return false; } catch(std::bad_alloc&) { return true; } }/* end of IsFull */ template<class ItemType> void DoubleQueue<ItemType>::EnQueue(ItemType newItem) { if(IsFull()) { std::cout<<"nQUEUE FULLn"; } else { NodeType* newNode = new NodeType; // adds new node newNode-> currentItem = newItem; newNode-> next = NULL; if(rear == NULL) { front = newNode; } else { rear-> next = newNode; } rear = newNode; ++size; } }/* end of EnQueue */ template<class ItemType> ItemType DoubleQueue<ItemType>::DeQueue() { if(IsEmpty()) { std::cout<<"nQUEUE EMPTYn"; } else { NodeType* tempPtr = front; // temporary pointer ItemType item = front-> currentItem; front = front-> next; if(front == NULL) { rear = NULL; } delete tempPtr; --size; return item; } }/* end of DeQueue */ template<class ItemType> ItemType DoubleQueue<ItemType>::Front() { if(IsEmpty()) { std::cout<<"nQUEUE EMPTYn"; } else { return front-> currentItem; } }/* end of Front */ template<class ItemType> ItemType DoubleQueue<ItemType>::Rear() { if(IsEmpty()) { std::cout<<"nQUEUE EMPTYn"; } else { return rear-> currentItem; } }/* end of Rear */ template<class ItemType> int DoubleQueue<ItemType>::Size() { if(IsEmpty()) { std::cout<<"nQUEUE EMPTYn"; } return size; }/* end of Size */ template<class ItemType> void DoubleQueue<ItemType>::MakeEmpty() { if(!IsEmpty()) { std::cout << "Destroying nodes ...n"; while(!IsEmpty()) { NodeType* tempPtr = front; //std::cout << tempPtr-> currentItem << 'n'; front = front-> next; delete tempPtr; } rear = NULL; size = 0; } }/* end of MakeEmpty */ template<class ItemType> DoubleQueue<ItemType>::~DoubleQueue() { MakeEmpty(); }// http://programmingnotes.org/ |
QUICK NOTES:
The highlighted lines are sections of interest to look out for.
The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.
===== DEMONSTRATION HOW TO USE =====
Use of the above template class is the same as its STL counterpart. Here is a sample program demonstrating its use.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
#include <iostream> #include "DoubleQueue.h" using namespace std; int main() { // declare variables DoubleQueue<char> charQueue; DoubleQueue<int> intQueue; DoubleQueue<float> floatQueue; // ------ Char Example ------// char charArry[]="My Programming Notes Helped Me Succeed!"; int counter=0; while(charArry[counter]!='\0') { charQueue.EnQueue(charArry[counter]); ++counter; } cout<<"charQueue has "<<charQueue.Size()<<" items in it " <<"and contains the text:n"; while(!charQueue.IsEmpty()) { cout<<charQueue.DeQueue(); } cout<<endl; // ------ Int Example ------// int intArry[]={1,22,3,46,5,66,7,8,1987}; counter=0; while(counter<9) { intQueue.EnQueue(intArry[counter]); ++counter; } cout<<"nintQueue has "<<intQueue.Size()<<" items in it.n" <<"The sum of the numbers in the queue is: "; counter=0; while(!intQueue.IsEmpty()) { counter-=intQueue.DeQueue(); } cout<<counter<<endl; // ------ Float Example ------// float floatArry[]={41.6,2.8,43.9,4.4,19.87,6.23,7.787,68.99,9.6,81.540}; float sum=0; counter=0; while(counter<10) { floatQueue.EnQueue(floatArry[counter]); ++counter; } cout<<"nfloatQueue has "<<floatQueue.Size()<<" items in it.n" <<"The sum of the numbers in the queue is: "; while(!floatQueue.IsEmpty()) { sum-=floatQueue.DeQueue(); } cout<<sum<<endl; return 0; }// http://programmingnotes.org/ |
Once compiled, you should get this as your output
charQueue has 39 items in it and contains the text:
My Programming Notes Helped Me Succeed!intQueue has 9 items in it.
The sum of the numbers in the queue is: -2145floatQueue has 10 items in it.
The sum of the numbers in the queue is: -286.717
C++ || Snippet – Linked List Custom Template Stack Sample Code
This page will consist of sample code for a custom linked list template stack. This page differs from the previously highlighted array based template stack in that this version uses a singly linked list to store data rather than using an array.
Looking for sample code for a queue? Click here.
REQUIRED KNOWLEDGE FOR THIS SNIPPET
Structs
Classes
Template Classes - What Are They?
Stacks
LIFO - What Is It?
#include < stack>
Linked Lists - How To Use
This template class is a custom duplication of the Standard Template Library (STL) stack class. Whether you like building your own data structures, you simply do not like to use any inbuilt functions, opting to build everything yourself, or your homework requires you make your own data structure, this sample code is really useful. I feel its beneficial building functions such as this, that way you better understand the behind the scene processes.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
// ============================================================================ // Author: K Perkins // Date: Apr 9, 2012 // Taken From: http://programmingnotes.org/ // File: ClassStackListType.h // Description: This is a class which implements various functions // demonstrating the use of a stack. // ============================================================================ #include <iostream> template <class ItemType> class StackListType { public: StackListType(); /* Function: constructor initializes class variables Precondition: none Postcondition: defines private variables */ bool IsEmpty(); /* Function: Determines whether the stack is empty Precondition: Stack has been initialized Postcondition: Function value = (stack is empty) */ bool IsFull(); /* Function: Determines whether the stack is full Precondition: Stack has been initialized Postcondition: Function value = (stack is full) */ int Size(); /* Function: Return the current size of the stack Precondition: Stack has been initialized Postcondition: If (stack is full) exception FullStack is thrown else newItem is at the top of the stack */ void MakeEmpty(); /* Function: Empties the stack Precondition: Stack has been initialized Postcondition: Stack is empty */ void Push(ItemType newItem); /* Function: Adds newItem to the top of the stack Precondition: Stack has been initialized Postcondition: If (stack is full) exception FullStack is thrown else newItem is at the top of the stack */ ItemType Pop(); /* Function: Returns & then removes top item from the stack Precondition: Stack has been initialized Postcondition: If (stack is empty) exception EmptyStack is thrown else top element has been removed from the stack */ ItemType Top(); /* Function: Returns the top item from the stack Precondition: Stack has been initialized Postcondition: If (stack is empty) exception EmptyStack is thrown else top element has been removed from the stack */ ~StackListType(); /* Function: destructor deallocates class variables Precondition: none Postcondition: deallocates private variables */ private: struct NodeType { ItemType currentItem; // Variable which hold all the incoming currentItem NodeType* next; // Creates a pointer that points to the next node in the list. }; int size; // Indicates the size of the stack ItemType junk; NodeType* headPtr; // Creates a head pointer that will point to the begining of the list. }; //========================= Implementation ================================// template<class ItemType> StackListType<ItemType>::StackListType() { size = 0; headPtr = NULL; }// End of StackListType template<class ItemType> bool StackListType<ItemType>::IsEmpty() { return (headPtr == NULL); }// End of IsEmpty template<class ItemType> bool StackListType<ItemType>::IsFull() { try { NodeType* tempPtr = new NodeType; delete tempPtr; return false; } catch(std::bad_alloc&) { return true; } }// End of IsFull template<class ItemType> int StackListType<ItemType>::Size() { if(IsEmpty()) { std::cout<<"nSTACK EMPTYn"; } return size; }// End of Size template<class ItemType> void StackListType<ItemType>::MakeEmpty() { size = 0; if (!IsEmpty()) { std::cout << "Destroying nodes ...n"; while (!IsEmpty()) { NodeType* tempPtr = headPtr; //std::cout << tempPtr-> currentItem << 'n'; headPtr = headPtr-> next; delete tempPtr; } } }// End of MakeEmpty template<class ItemType> void StackListType<ItemType>::Push(ItemType newItem) { if(IsFull()) { std::cout<<"nSTACK FULLn"; return; } NodeType* tempPtr = new NodeType; tempPtr-> currentItem = newItem; tempPtr-> next = headPtr; headPtr = tempPtr; ++size; }// End of Push template<class ItemType> ItemType StackListType<ItemType>::Pop() { if(IsEmpty()) { std::cout<<"nSTACK EMPTYn"; return junk; } else { ItemType data = headPtr-> currentItem; NodeType* tempPtr = headPtr; headPtr = headPtr-> next; delete tempPtr; --size; return data; } }// End of Pop template<class ItemType> ItemType StackListType<ItemType>::Top() { if(IsEmpty()) { std::cout<<"nSTACK EMPTYn"; return junk; } else { return headPtr-> currentItem; } }// End of Top template<class ItemType> StackListType<ItemType>::~StackListType() { MakeEmpty(); }// http://programmingnotes.org/ |
QUICK NOTES:
The highlighted lines are sections of interest to look out for.
The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.
===== DEMONSTRATION HOW TO USE =====
Use of the above template class is the same as its STL counterpart. Here is a sample program demonstrating its use.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
#include <iostream> #include "ClassStackListType.h" using namespace std; int main() { // declare variables StackListType<char> charStack; StackListType<int> intStack; StackListType<float> floatStack; // ------ Char Example ------// char charArry[]="My Programming Notes Is Awesome"; int counter=0; while(charArry[counter]!='\0') { charStack.Push(charArry[counter]); ++counter; } cout<<"charStack has "<<charStack.Size()<<" items in itn" <<"and contains the text ""<<charArry<<"" backwards:n"; while(!charStack.IsEmpty()) { cout<<charStack.Pop(); } cout<<endl; // ------ Int Example ------// int intArry[]={1,22,3,46,5,66,7,8,1987}; counter=0; while(counter<9) { intStack.Push(intArry[counter]); ++counter; } cout<<"nintStack has "<<intStack.Size()<<" items in it.n" <<"The sum of the numbers in the stack is: "; counter=0; while(!intStack.IsEmpty()) { counter+=intStack.Pop(); } cout<<counter<<endl; // ------ Float Example ------// float floatArry[]={41.6,2.8,43.9,4.4,19.87,6.23,7.787,68.99,9.6,81.540}; float sum=0; counter=0; while(counter<10) { floatStack.Push(floatArry[counter]); ++counter; } cout<<"nfloatStack has "<<floatStack.Size()<<" items in it.n" <<"The sum of the numbers in the stack is: "; while(!floatStack.IsEmpty()) { sum+=floatStack.Pop(); } cout<<sum<<endl; }// http://programmingnotes.org/ |
Once compiled, you should get this as your output
charStack has 31 items in it
and contains the text "My Programming Notes Is Awesome" backwards:
emosewA sI setoN gnimmargorP yMintStack has 9 items in it.
The sum of the numbers in the stack is: 2145floatStack has 10 items in it.
The sum of the numbers in the stack is: 286.717
C++ || Struct – Add One Day To Today’s Date Using A Struct
This program displays more practice using the structure data type, and is very similar to another program which was previously discussed here.
REQUIRED KNOWLEDGE FOR THIS PROGRAM
Functions
Passing a Value By Reference
Integer Arrays
Structures
Constant Variables
Boolean Expressions
This program utilizes a struct, which is very similar to the class concept. This program first prompts the user to enter the current date in mm/dd/yyyy format. Upon obtaining the date from the user, the program then uses a struct implementation to simply add one day to the date which was entered by the user. If the day that was entered into the program by the user falls on the end of the month, the program will”roll over” the incremented date into the next month. If the user enters 12/31/2012, the program will “roll over” the incremented date into the next calendar year.
NOTE: On some compilers, you may have to add #include < cstdlib> in order for the code to compile.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
#include <iostream> using namespace std; // struct declaration struct Date { int month; int day; int year; }; // constants which do not change // specifies the max values for each variable const int MAX_DAYS = 31; const int MAX_MONTHS = 12; // function prototypes bool IsDateValid(Date dateVal); void CalcNextDay(Date &dateVal); int main() { // initialize the structure: month, day, year Date dateVal = {1,18,2012}; char backSlash = '/'; // this is a 'placeholder' variable // obtain information from user cout << "Please enter today's date in mm/dd/yyyy format: "; cin >> dateVal.month >> backSlash >> dateVal.day >> backSlash >> dateVal.year; // Checks to see if user entered valid data if (IsDateValid(dateVal) == false) { cout << "Invalid input...nProgram exiting...." << endl; exit(EXIT_FAILURE); } // function declaration which calculates the next day CalcNextDay(dateVal); // display updated data to user cout << "The next day is " << dateVal.month << "/" << dateVal.day << "/" << dateVal.year <<endl; return 0; }// end of main // this function checks to see if the user inputted valid data bool IsDateValid(Date dateVal) { // checks to see if user inputted data falls between the specified // const variables as declared above if ((dateVal.day >= 1 && dateVal.day <= MAX_DAYS) &&(dateVal.month >= 1 && dateVal.month <= MAX_MONTHS)) { return true; } else { return false; } }// end of IsDateValid // this calculates the next day & updates values via reference void CalcNextDay(Date &dateVal) { // int array which holds the max date each month has // from January to December int maxDays[12]={31,28,31,30,31,30,31,31,30,31,30,31}; // bool which lets the program know if the month the // user entered is a max month for the specific month // the user inputted bool maxDay = false; // checks to see if user inputted day is a max date from the // above array for the currently selected month which // was entered by the user if(dateVal.day == maxDays[dateVal.month-1]) { dateVal.day = 1; ++dateVal.month; maxDay = true; } // checks to see if user inputted a valid date // for the currently selected month else if (dateVal.day > maxDays[dateVal.month-1]) { cout << "Invalid day input - There is no such date for the selected month.nProgram exiting...." << endl; exit(EXIT_FAILURE); } // if user didnt enter a max date, and the date is valid, increment the day else { ++dateVal.day; } // if the date is 12/31/yyyy // increment to the next year if ((dateVal.month > 12) && maxDay == true) { dateVal.month = 1; ++dateVal.year; } }// http://programmingnotes.org/ |
QUICK NOTES:
The highlighted lines are sections of interest to look out for.
The code is heavily commented, so no further insight is necessary. If you have any questions, feel free to leave a comment below.
Once compiled, you should get this as your output:
Note: The code was compiled 6 separate times to display the different outputs its able to produce
Please enter today's date in mm/dd/yyyy format: 1/18/2012
The next day is 1/19/2012
-------------------------------------------------------------------Please enter today's date in mm/dd/yyyy format: 7/31/2012
The next day is 8/1/2012
-------------------------------------------------------------------Please enter today's date in mm/dd/yyyy format: 2/28/2012
The next day is 3/1/2012
-------------------------------------------------------------------Please enter today's date in mm/dd/yyyy format: 13/5/2012
Invalid input...
Program exiting....
-------------------------------------------------------------------Please enter today's date in mm/dd/yyyy format: 2/31/2012
Invalid day input - There is no such date for the selected month.
Program exiting....
-------------------------------------------------------------------Please enter today's date in mm/dd/yyyy format: 12/31/2012
The next day is 1/1/2013
C++ || Struct – Add One Second To The Clock Using A Struct
Here is another actual homework assignment which was presented in an intro to programming class. This program utilizes a struct, which is very similar to the class concept. For this assignment, the class was asked to make a program which prompted the user to enter a time in HH:MM:SS (Hours:Minutes:Seconds) format. Upon obtaining the time from the user, our class was asked to use a struct implementation which was to simply add one second to the time that was entered by the user. Seems easy enough, though I initially had afew problems when starting the program.
This page will be very brief in its breakdown of the program’s code, as it is already heavily commented. The code is basically unchanged from the code which was turned in for grading.
REQUIRED KNOWLEDGE FOR THIS PROGRAM
Functions
Passing a Value By Reference
Structures
Constant Variables
Boolean Expressions
Setw
NOTE: On some compilers, you may have to add #include < cstdlib> in order for the code to compile.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
// ============================================================================ // File: AddOneSecond.cpp // ============================================================================ // Description: // This program prompts the user for the input time, then adds // one second to the time -- if any of the time structure fields need to // "rollover" (e.g., the hours, minutes or seconds need to be reset to zero), // this function will handle that. Finally, the incremented time will be // displayed to stdout. // ============================================================================ #include <iostream> #include <iomanip> using namespace std; // structure declaration struct Time { int hours; int min; int sec; }; // defined constants which do not change // specifies the max values for each variable const int MAX_HOURS = 23; const int MAX_MINS = 59; const int MAX_SECS = 59; // function prototypes bool IsTimeValid(Time timeParam); void AddOneSecond(Time &timeParam); void DisplayTime(Time timeParam); // ==== main ================================================================== // // ============================================================================ int main() { Time userTime = {0,0,0}; // Initialize struct members: hrs, min, sec to 0 char colon = ':'; cout << "Please enter the time in HH:MM:SS format: "; cin >> userTime.hours >> colon >> userTime.min >> colon >> userTime.sec; // Checks to see if user entered correct data if (IsTimeValid(userTime) == false) { cout << "Invalid input...n" << endl; exit(EXIT_FAILURE); } cout << "nThe incremented time is "; AddOneSecond(userTime); DisplayTime(userTime); return 0; } // end of main // ==== IsTimeValid =========================================================== // // This function will validate that the time structure contains legitimate // values. If this function determines that the time values are invalid, it // will display an error message to stdout. // // Input: // limit [IN] -- The users time input // // Output: // The Time structure as an argument to the AddOneSecond function // // ============================================================================ bool IsTimeValid(Time timeParam) { // checks to see if user inputted data falls between the specified // const variables as declared above if ((timeParam.hours >= 0 && timeParam.hours <= MAX_HOURS) &&(timeParam.min >= 0 && timeParam.min <= MAX_MINS) &&(timeParam.sec >= 0 && timeParam.sec <= MAX_SECS)) { return true; } else { return false; } } // end of IsTimeValid // ==== AddOneSecond ========================================================== // // This function will add one second to the time // // Input: // limit [IN] -- The users time input // // Output: // The incremented time will be displayed to stdout by calling the // DisplayTime function // // ============================================================================ void AddOneSecond(Time &timeParam) { // this is just a simple bool which checks to see if // the program should increment the max hrs in the // 1st or 2nd if statements, which are located below bool incrementHrsInFirstIf = false; // this is just a simple bool which checks to see if // the program should increment the max mins in the // 2nd or 3rd if statements, which are located below bool incrementMinInSecondIf = false; // ========== if statement #1 - hrs ========== // checks to see if user selected hrs is equal to MAX // if it is, reset time back to 0 if (timeParam.hours == MAX_HOURS && timeParam.min == MAX_MINS) { timeParam.hours = 0; incrementHrsInFirstIf = true; } // ========== if statement #2 - min ========== // checks to see if user selected mins is equal to MAX // if it is, reset time back to 0 if (timeParam.min == MAX_MINS) { timeParam.min = 0; // if mins == 59, we need to increment the hrs by 1 if(incrementHrsInFirstIf == false) { ++timeParam.hours; } incrementMinInSecondIf = true; } // ========== if statement #3 - Secs ========== // checks to see if user selected sec is equal to MAX // if it is, reset time back to 0 if (timeParam.sec == MAX_SECS) { timeParam.sec = 0; // if secs == 59, we need to increment the mins by 1 if(incrementMinInSecondIf == false) { ++timeParam.min; } } else // if time is not at max, increment by 1 { ++timeParam.sec; } } // end of AddOneSecond // ==== DisplayTime =========================================================== // // This function will display the user's time // // Input: // limit [IN] -- The users time input // // Output: // The incremented time will be displayed // // ============================================================================ void DisplayTime(Time timeParam) { cout.fill('0'); cout << setw(2) << timeParam.hours << ":" << setw(2) << timeParam.min << ":" << setw(2) << timeParam.sec << endl; } // http://programmingnotes.org/ |
QUICK NOTES:
The highlighted lines are sections of interest to look out for.
STRUCT
The structure declaration is placed above the main function, as noted on lines 16-21, containing the 3 variables (Hrs, min, sec) which are defined within the program. Line 39 displays how to access those variables from the main function, having the variable “Time userTime” as the means of access. Note, line 43, the variables can utilize cin for input.
CONST
Lines 25-27 declare the constant variables, which hold the maximum allowable time the clock is able to display. The function IsTimeValid (line 72) checks to see if user defined input is within the maximum allowable limit or not.
FILL
The program will automatically display 2 numbers for hours,mins,sec even if the user only inputted one number, as noted on lines 169-172. This is basically the same as the setfill function.
Once compiling the above code, you should receive this as your output
Note: The code was compiled five separate times to display the different outputs its able to produce
==== SAMPLE RUN #1 ====
Please enter the time in HH:MM:SS format: 0:0:25
The incremented time is 00:00:26==== SAMPLE RUN #2 ====
Please enter the time in HH:MM:SS format: 23:58:59
The incremented time is 23:59:00==== SAMPLE RUN #3 ====
Please enter the time in HH:MM:SS format: 23:59:59
The incremented time is 00:00:00==== SAMPLE RUN #4 ====
Please enter the time in HH:MM:SS format: : :
The incremented time is 00:00:01==== SAMPLE RUN #5 ====
Please enter the time in HH:MM:SS format: 76:09:67
Invalid input...